Evaluation of urothelial stretch-induced cyclooxygenase-2 expression in novel human cell culture and porcine in vivo ureteral obstruction models.
نویسندگان
چکیده
Obstruction and stretch induce cyclooxygenase (COX)-2 expression and prostanoid synthesis in urinary tissues, causing pain, inflammation, hypercontractility, and cell proliferation. Our objective was to characterize acute COX-2 induction during in vivo ureteral obstruction, establish a cell culture model of urothelial stretch-induced COX-2 expression, and evaluate whether mechanotransduction could alter transcriptional and post-transcriptional regulation of COX-2. We performed laparoscopic unilateral ureteral ligation in pigs and allowed progression for 1, 2, 6, 24, or 48 h. We evaluated COX-2 expression with reverse transcriptase (RT)-polymerase chain reaction (PCR) and immunoblotting. We cultured primary human urothelial cells on stretch plates, applied stretch for up to 48 h, and measured COX-2 expression by RT-PCR and immunoblotting, transcription with run-on assays, and mRNA stability with actinomycin mRNA decay assays. In vivo ureteral obstruction induced COX-2 expression 4-fold within 6 h, maintaining induction for 24 h. In cell culture, stretch induced COX-2 steady-state mRNA and protein within the first 3 h of stretch, maintaining this induction for over 6 h. Three hours of stretch doubled COX-2 transcription relative to unstretched controls and increased COX-2 mRNA half-life 3-fold. This is the first report to characterize in vivo temporal stretch-induced COX-2 expression in the urothelium and establish a primary urothelial cell culture model for the study of stretch-induced COX-2 mechanisms. This is also the first report to identify alterations in steady-state COX-2 mRNA having components of both transcriptional and post-transcriptional regulation of stretch-regulated COX-2. Future elucidation of COX-2 signaling may identify novel therapeutic targets for treating stretch and distension of urinary tissues.
منابع مشابه
Stretch Induction of Cyclooxygenase-2 Expression in Human Urothelial Cells Is Calcium- and Protein Kinase C -Dependent
Prostanoid synthesis via cyclooxygenase (COX)-2 induction during urothelial stretch is central to nociception, inflammation, contractility, and proliferation caused by urinary tract obstruction. We used our primary human urothelial cell stretch model published previously to evaluate the signaling mechanisms responsible for stretch-induced COX-2 expression in urothelial cells. To determine intra...
متن کاملStretch induction of cyclooxygenase-2 expression in human urothelial cells is calcium- and protein kinase C zeta-dependent.
Prostanoid synthesis via cyclooxygenase (COX)-2 induction during urothelial stretch is central to nociception, inflammation, contractility, and proliferation caused by urinary tract obstruction. We used our primary human urothelial cell stretch model published previously to evaluate the signaling mechanisms responsible for stretch-induced COX-2 expression in urothelial cells. To determine intra...
متن کاملQuercetin attenuates cyclooxygenase-2 expression in response to acute ureteral obstruction.
Unilateral ureteral obstruction (UUO) is associated with increased hydrostatic pressure, inflammation, and oxidative stress in the renal parenchyma. Previous studies have demonstrated marked cyclooxygenase (COX)-2 induction in renal medullary interstitial cells (RMICs) in response to UUO. The aim of the present study was to evaluate the effect of quercetin, a naturally occurring antioxidant, on...
متن کاملPressure and stretch differentially affect proliferation of renal proximal tubular cells
Renal obstruction is frequently found in adults and children. Mechanical stimuli, including pressure and stretch in the obstructed kidney, contribute to damage; animal models of obstruction are characterized by increased cellular proliferation. We were interested in the direct effects of pressure and stretch on renal tubular cell proliferation. Human HKC-8 or rat NRK-52E proximal tubule cells w...
متن کاملObstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch.
Studies were performed to investigate the regulatory mechanism of bladder cyclooxygenase-2 (COX-2) expression after outlet obstruction. In situ hybridization of murine bladder tissues using COX-2-specific riboprobes demonstrated that COX-2 expression was induced predominantly in the bladder smooth muscle cells after outlet obstruction. To study the effect of increased mechanical stretch on COX ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 317 3 شماره
صفحات -
تاریخ انتشار 2006